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Image reconstruction

e Image reconstruction can often be formulated as mathematical
model y = Au ® 7, the operator ® denote addition(Gaussian
noise) or nonlinear operator(Poisson noise):

Denoising: A is an identity operator

Deblurring: A is a convolution operator

Positron emission tomography (PET): A is a linear projection
operator

e It can be modeled as an inverse problem: y = u

e Various sources of uncertainty: observation noise, model error,
numerical error, ill-posedness...
The estimation results have uncertainty!
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Positron Emission Tomography(PET)

e u(x): unknown

£(60,t): positron beam

Sinogram(noisy free data):
w(ta 9) = Af = fL(Q’t) u(l‘)|dl‘|
Data y follows a Poisson distribution:

yho ~ mp(|K9) = [T, O gpersl

Goal: reconstruct u(x)
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Bayesian formula
e Bayes' Theorem:

e 2L FRGERR > (vt
)
NN = @A
1

ewdence prior data posterior

_: knowledge on u before y observed.

_: knowledge on u after y observed.
_: the impact of y on the degree of belief on u.

-: the probability of y, also known as normalizaiton con-
stant.

e The prior is required to yield a "useful” estimate of the unknown.

e The posterior summarizes information from both the data and the
prior.
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Bayesian formula in function space

e Let X bet the Sobolev space H'(€2) in which Q is a bounded
open subset of R?. The posterior measure ¥ is provided by the
Radon-Nikodym derivative:

dpy

—(u) x exp|—®(u, y)|,

P ) o expl~ (1)
where

- o is a prior measure, a.k.a reference measure

- ®(u,y) is a potential function

e Positivity-preserving reparametrization
- u= f(2(x)) = lerf(2(x)) + b],a > 0,6 > 1.
e Infer new unkown z
dap?

() expl (=)
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Prior
e Total variation-Gaussian (TV-Gaussian) prior can detect edges or
jumps in the images or functions
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—truth
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e The Radon-Nikodym derivative of pi,, w.r.t. pg is given by:

dptpy
dT:;(Z) o exp(—R(z)),

where
- R(z) = Mzlltv = A [ V2] 2dz

- 1o = N(&,Ch), Co(x,x") = yexp {—7“)(_;/”1]
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Likelihood and posterior

e Likelihood function(noise level K = 1)
a eXP i)

m(ylu) = mp(y| K1) = H

i=1

e Posterior measure

Radon-Nikodym derivative of u¥ w.r.t. po can be written as:

dp? e dpy
dpio d,upr dpo

(2) o exp[=®(2,¥) — R(2)];

we define ¥(z) := ®(z,y) + R(2).
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Primal-dual(PD) preconditioned Crank-Nicolson
Langevin method(pCNL) algorithm

e pCNL is a dimension-independent sampling method.

(2—0)z —25GD¥(2) + V8w pCNL
(2 —0)z — 286Cog(z) + V8w  PD-pCN,
(

where ¢ € [0,2], w ~ N (&, (o).

(2+5)U:{

e Find offset direction g(z) using primal-dual method
- Define problem: min,cx ¥(2) = ®(z) + A||z||rv s.t. Dz = ¢
- The augmented Lagrangian:

(Z*7¢*77’]*) = max min LP(Z7¢7 77)

neELI(Q) z€X,peLI(Q)
= 0(2) + Mgl + (n, Dz — 9) + 2|22 — 93,
where ¢(z) = [¢1(2), d2(@)]. 6]l = (16107, + 62017, )

-g= Q)Lp(zk7¢*7n*)
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PD-pCN MCMC algorithm

©® (2%, 9", ") = max,cryq) Milex gery)  Lp(2,8,m)
@ Let 20 =2+
© For k=0,1,2...
g = @Lp(zk7¢*,n*)
Propose v using (2 + §)v = (2 — §)z — 26Cog + V80w
Compute accept probability a(z,v)?
if a ~ UJ[0,1] < a(z,v) then

JO NS
else

k+1 _ Lk

é@@e@@e

1The accept probability

a(z,v) = min{1, exp(p(z,v) — p(v, 2))},
where 1 5 5
plzv) = W(2) + 5 (v = 2,9) + 7 (= +v.9) + 716" gl
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Inference results

Posterior mean and its highest posterior density interval (HPDI)

posterior mean HPDI(95%)
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Artifacts detection using posterior distribution

e In image reconstruction, due to the imperfection of the reconstruc-
tion method, the recovered image often contains features which
are not present in the true imaged object, and such features are
called artifacts.

o Let mx(u(x)|y) be the posterior of u(x), 7, is the largest constant
satisfying
Plu(x)|m<(u(x)ly) > ma) > (1 = ).

The 100(1 — «)% highest posterior density intrval(HPDI) is
Co = {u(x)|mx(u(x)[y) > ma}-
e To test a pixel value 4(x), we compute the smallest HPDI(largest

« that contains @(x). The larger the HPDI is, the less likely the
pixel value is correct.
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Artifacts detection examples
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test image credible level (1-«)
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Determining )\

Posterior

dy”

dpg ) o exp[=@(z,y) = Alz|rv]

R(z2)

The parameter X\ controls the strength of the prior.

Full Bayes: treat A as additional random variable and infer m(u, \)

Empirical Bayes: maximize the marginal likelihood max) 7(y|\)

Both methods are computationally intractable as we do not know
the normalization constant of prior.
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The realized discrepancy

e Introduce a function that measures the discrepancy between data
y and the unknown u, say D(y,u)

e For a given u, let y be data realized from 7(-|u), we define the
probability
pe(y,u) = P(D(y,u) > D(y,u))
as the likelihood for y is drawn from 7(-|u).

e p. can assess the fitness of a specific value of u to the data

e We choose D(y, ) = > i, (y’;#)? then

pe(y. ) = P(xi > D(y, 1))
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Posterior predictive p-value
e The posterior predictive p-value is define as the average of realized
discrepancy over all possible u:

p(y) = /pc(y,U)W(uy)du.

e The posterior predictive py assess the fitness between the posterior

distribution and the data y.

e pp is too small: the data is not well fitted(underfitting)

e py is too big: the posterior fits the data "too well” (overfitting)

e We should choose A in a way that the effects of prior and data are

well balanced, which is indicated by an appropriate value of p.

e The posterior predictive p, and the PSNR of the resulting MAP

A 0 0.5 1 2 3 4
Db 0.99 | 0.82 | 0.28 | 0.04 | 0.0034 | 0.0005
PSNR | 18.21 | 21.90 | 22.0 | 20.66 | 19.76 | 19.27
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Theorem results

e 1Y is a well-defined probability measure on X.

e 1Y is Lipschitz in the data y, with respect to the Hellinger dis-
tance: if p¥ and pcy/ are two measures corresponding to data y
and ¥/, then there exists C' = C(r) such that, for all y,y" with
max{||yll2, [[y']l2} <,

dren (1, 1) < Clly — y/||o-
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theorem results(cont’d)
o let
— = = exp(=®n, (2) — By, (2)),
where @, (z) is a N1 € N dimensional approximation of ®(z) and
Rn,(z) is a No € N dimensional approximation of R(z). Assume
that @, satisfies Proposition 5.1, and Ry, satisfis Assumptions
A.2 (i) and (ii) in (Yao et al, IP, 2016). Assume also that for any
e > 0, there exist two positive sequences {an, (€)} and {bn,(€)}

converging to zero, such that po(X,) > 1 — € for any Ni, Ny € N,
where

Xe={2z € X||®2(2)—Pn,(2)| < an, (€), [R(2)—Rn,(2)] < by, (€)}-
Then we have

dHell(MyaM?vth) —0 as Ni, Ny — +oo.
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Summary

We provide a complete framework for performing infinite dimen-
sional and uncertainty quantification Bayesian inference for image
reconstruction with Poisson data.

@ Computation: dimensional-independent sampling method
® Theorem: well-defined posterior in functional space

© Application: artifacts detection
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Thank you for your attention
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