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Image reconstruction

• Image reconstruction can often be formulated as mathematical
model y = Au⊗ η, the operator ⊗ denote addition(Gaussian
noise) or nonlinear operator(Poisson noise):

- Denoising: A is an identity operator

- Deblurring: A is a convolution operator

- Positron emission tomography (PET): A is a linear projection
operator

- ...

• It can be modeled as an inverse problem: y⇒ u

• Various sources of uncertainty: observation noise, model error,
numerical error, ill-posedness...
The estimation results have uncertainty!
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Positron Emission Tomography(PET)

• u(x): unknown

• L(θ, t): positron beam

• Sinogram(noisy free data):
ψ(t, θ) = Af =

∫
L(θ,t) u(x)|dx|.

• Data y follows a Poisson distribution:

y|ψ ∼ πP(·|Kψ) =
∏d
i=1

(Kψi)
yiexp(−Kψi)
yi!

• Goal: reconstruct u(x)
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Bayesian formula
• Bayes’ Theorem:

posterior︷ ︸︸ ︷
π(u|y) =

likelihood︷ ︸︸ ︷
π(y|u)

prior︷ ︸︸ ︷
π(u)

π(y)︸ ︷︷ ︸
evidence

π(u|y) ∝ π(y|u) π(u)

Inference 

prior  posterior data

prior distribution : knowledge on u before y observed.

posterior distribution : knowledge on u after y observed.

likelihood function : the impact of y on the degree of belief on u.

evidence : the probability of y, also known as normalizaiton con-
stant.

• The prior is required to yield a ”useful” estimate of the unknown.

• The posterior summarizes information from both the data and the
prior.
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Bayesian formula in function space
• Let X bet the Sobolev space H1(Ω) in which Ω is a bounded

open subset of Rd. The posterior measure µy is provided by the
Radon-Nikodym derivative:

dµy

dµ0
(u) ∝ exp[−Φ(u, y)],

where

- µ0 is a prior measure, a.k.a reference measure

- Φ(u,y) is a potential function

• Positivity-preserving reparametrization

- u = f(z(x)) = a
2 [erf(z(x)) + b], a > 0, b > 1.

• Infer new unkown z

dµy

dµ0
(z) ∝ exp[−Φ(z, y)].
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Prior
• Total variation-Gaussian (TV-Gaussian) prior can detect edges or

jumps in the images or functions

Data Gaussian TV-Gaussian
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• The Radon-Nikodym derivative of µpr w.r.t. µ0 is given by:

dµpr

dµ0
(z) ∝ exp(−R(z)),

where

- R(z) = λ‖z‖TV = λ
∫

Ω ‖∇z‖2dx
- µ0 = N(ξ, C0), C0(x,x′) = γexp

[
−‖x−x′‖1d

]
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Likelihood and posterior

• Likelihood function(noise level K = 1)

π(y|u) = πP(y|Kψ) =

d∏
i=1

(ψi)
yiexp(−ψi)
yi!

.

• Posterior measure
Radon-Nikodym derivative of µy w.r.t. µ0 can be written as:

dµy

dµ0
(z) =

dµy

dµpr

dµpr

dµ0
(z) ∝ exp[−Φ(z,y)−R(z)],

we define Ψ(z) := Φ(z,y) +R(z).
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Primal-dual(PD) preconditioned Crank-Nicolson
Langevin method(pCNL) algorithm

• pCNL is a dimension-independent sampling method.

(2 + δ)v =

{
(2− δ)z − 2δC0DΨ(z) +

√
8δw pCNL

(2− δ)z − 2δC0g(z) +
√

8δw PD-pCN,

where δ ∈ [0, 2], w ∼ N(ξ, C0).

• Find offset direction g(z) using primal-dual method

- Define problem: minz∈X Ψ(z) = Φ(z) + λ‖z‖TV s.t. Dz = φ

- The augmented Lagrangian:

(z∗, φ∗, η∗) = max
η∈Lq

2(Ω)
min

z∈X,φ∈Lq
2(Ω)

Lρ(z, φ, η)

= Φ(z) + λ‖φ‖H1 + 〈η,Dz − φ〉+
ρ

2
‖Dz − φ‖22,

where φ(x) = [φ1(x), φ2(x)], ‖φ‖H1 =
(
‖φ1(x)‖2L2(Ω) + ‖φ2(x)‖2L2(Ω)

)1/2
.

- g = DLρ(zk, φ∗, η∗)
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PD-pCN MCMC algorithm
1 (z∗, φ∗, η∗) = maxη∈Lq2(Ω) minz∈X,φ∈Lq2(Ω) Lρ(z, φ, η)

2 Let z0 = z∗

3 For k = 0, 1, 2...

4 g = DLρ(zk, φ∗, η∗)
5 Propose v using (2 + δ)v = (2− δ)z − 2δC0g +

√
8δw

6 Compute accept probability a(z, v)1

7 if a ∼ U [0, 1] < a(z, v) then

8 zk+1 = v

9 else

10 zk+1 = zk
1The accept probability

a(z, v) = min{1, exp(ρ(z, v)− ρ(v, z))},

where

ρ(z, v) = Ψ(z) +
1

2
〈v − z, g〉+

δ

4
〈z + v, g〉+

δ

4
‖C1/2

0 g‖2.
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Inference results

Posterior mean and its highest posterior density interval (HPDI)
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Artifacts detection using posterior distribution

• In image reconstruction, due to the imperfection of the reconstruc-
tion method, the recovered image often contains features which
are not present in the true imaged object, and such features are
called artifacts.

• Let πx(u(x)|y) be the posterior of u(x), πα is the largest constant
satisfying

P (u(x)|πx(u(x)|y) > πα) ≥ (1− α).

The 100(1− α)% highest posterior density intrval(HPDI) is

Cα = {u(x)|πx(u(x)|y) > πα}.

• To test a pixel value û(x), we compute the smallest HPDI(largest
α that contains û(x). The larger the HPDI is, the less likely the
pixel value is correct.
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Artifacts detection examples
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Determining λ

• Posterior
dµy

dµ0
(z) ∝ exp[−Φ(z,y)− λ‖z‖TV︸ ︷︷ ︸

R(z)

]

• The parameter λ controls the strength of the prior.

• Full Bayes: treat λ as additional random variable and infer π(u, λ)

• Empirical Bayes: maximize the marginal likelihood maxλ π(y|λ)

• Both methods are computationally intractable as we do not know
the normalization constant of prior.
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The realized discrepancy

• Introduce a function that measures the discrepancy between data
y and the unknown u, say D(y, u)

• For a given u, let ỹ be data realized from π(·|u), we define the
probability

pc(y, u) = P(D(y, u) > D(ỹ, u))

as the likelihood for y is drawn from π(·|u).

• pc can assess the fitness of a specific value of u to the data

• We choose D(y, ψ) =
∑n

i=1
(yi−ψi)2

ψ2
i

, then

pc(y, ψ) = P (χ2
n > D(y, ψ))
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Posterior predictive p-value
• The posterior predictive p-value is define as the average of realized

discrepancy over all possible u:

pb(y) =

∫
pc(y, u)π(u|y)du.

• The posterior predictive pb assess the fitness between the posterior
distribution and the data y.

• pb is too small: the data is not well fitted(underfitting)

• pb is too big: the posterior fits the data ”too well”(overfitting)

• We should choose λ in a way that the effects of prior and data are
well balanced, which is indicated by an appropriate value of pb.

• The posterior predictive pb and the PSNR of the resulting MAP

λ 0 0.5 1 2 3 4

pb 0.99 0.82 0.28 0.04 0.0034 0.0005

PSNR 18.21 21.90 22.0 20.66 19.76 19.27
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Theorem results

• µy is a well-defined probability measure on X.

• µy is Lipschitz in the data y, with respect to the Hellinger dis-
tance: if µy and µy

′
are two measures corresponding to data y

and y′, then there exists C = C(r) such that, for all y, y′ with
max{‖y‖2, ‖y′‖2} < r,

dHell(µ
y, µy

′
) ≤ C‖y − y′‖2.

Qingping Zhou, CSU 16/20



theorem results(cont’d)
• Let

dµyN1,N2

dµ0
= exp(−ΦN1(z)−RN2(z)),

where ΦN1(z) is a N1 ∈ N dimensional approximation of Φ(z) and
RN2(z) is a N2 ∈ N dimensional approximation of R(z). Assume
that ΦN1 satisfies Proposition 5.1, and RN2 satisfis Assumptions
A.2 (i) and (ii) in (Yao et al, IP, 2016). Assume also that for any
ε > 0, there exist two positive sequences {aN1(ε)} and {bN2(ε)}
converging to zero, such that µ0(Xε) ≥ 1− ε for any N1, N2 ∈ N,
where

Xε = {z ∈ X | |Φ(z)−ΦN1(z)| ≤ aN1(ε), |R(z)−RN2(z)| ≤ bN2(ε)}.

Then we have

dHell(µ
y, µyN1,N2

)→ 0 as N1, N2 → +∞.
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Summary

We provide a complete framework for performing infinite dimen-
sional and uncertainty quantification Bayesian inference for image
reconstruction with Poisson data.

1 Computation: dimensional-independent sampling method

2 Theorem: well-defined posterior in functional space

3 Application: artifacts detection
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Thank you for your attention
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