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What is an Inverse Problem? 

▸Formulation of an inverse problem

𝑦 = 𝒜 𝑥 + 𝜖,

where 𝒜 represents a forward  operator and 𝜖 is the observation noise. We want 

to infer a quantity 𝑥 from indirect observations 𝑦.

2

Examples: Computed Tomography

𝒜 𝑥 ≈ 𝐴𝑥 is Linear.
Many research papers

Examples: Electrical Impedance Tomography 

𝒜 𝑥 = 𝐴(𝑥) is nonlinear.
A few research papers!
(This talk)
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Computational Challenges

▸ill-posed

▸large-scale nature

3



International Congress on Industrial and Applied Mathematics (ICIAM)  |  2023  

Computational Challenges

▸ill-posed

▸large-scale nature

▸lack of relevant training data

4

This may be irrelevant in 

settings with lots of training data

but is critical in more limited-

data settings
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AI-driven methods for Inverse Problems

Fully data-driven methods：train an input-to-solution DNN

▸fast inference: fewer layers than classic optimization iterations

▸slow training: too many parameters

▸Inaccurate solutions: poor generalization

Model-based methods: modify classical optimization algorithms

▸deep unrolling networks (DuNets), a.k.a algorithm unrolling (this talk)

▸Plug-and-play

▸Deep equilibrium or fixed-point network

▸…

5
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▸DuNets consists of two steps

(1) Pick a classic iterative optimization algorithm and unroll it to an DNN

(2) Select a set of DNN parameters to learn

▸Example: assume y = 𝐴𝑥 + 𝑛𝑜𝑖𝑠𝑒; recover 𝑥 by minimizing

arg min
𝑥′∈𝑋

1

2
𝐴𝑥 − 𝑏 2

2 + 𝜆ℛ 𝑥

Deep unrolling networks (DuNets)

6
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▸DuNets consists of two steps

(1) Pick a classic iterative optimization algorithm and unroll it to an DNN

(2) Select a set of DNN parameters to learn

▸Example: assume y = 𝐴𝑥 + 𝑛𝑜𝑖𝑠𝑒; recover 𝑥 by minimizing

arg min
𝑥′∈𝑋

1

2
𝐴𝑥 − 𝑏 2

2 + 𝜆ℛ 𝑥

▸ Proximal gradient descent (PGD):

                                             𝑥𝑡 = 𝒫𝜆ℛ(𝑥𝑡−1 − 𝛼A𝑇(𝐴𝑥𝑡−1 − 𝑦)),

    where𝒫𝜆ℛ ∙  is the proximal operator:

𝒫𝜆ℛ(𝑥) = arg min
𝑥′∈𝑋

1

2
𝑥′ − 𝑥 𝑋

2 + 𝜆ℛ 𝑥′ .

Deep unrolling networks (DuNets)

7
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▸Introduce 𝑊𝑒 = 𝛼A𝑇 and 𝑊𝑡 = I − 𝛼A𝑇𝐴, rewrite PGD as

                                             𝑥𝑡 = 𝒫𝜆ℛ 𝑊𝑡𝑥𝑡−1 + 𝑊𝑒𝑦 .

▸ LearnedPGD: replace 𝒫𝜆ℛ with learned network Ψ𝜃𝑡

    𝑥𝑡 = Ψ𝜃𝑡
𝑊𝑡𝑥𝑡−1 + 𝑊𝑒𝑦 , for 𝑡 = 1, … , 𝑇,

    which resembles a DNN

Learned Proximal gradient descent (LPGD)

8

𝑥0 𝑥𝑇 ≈ 𝑥𝑊𝑡

𝑊𝑒𝑦

Ψ𝜃1
𝑊𝑡

𝑊𝑒𝑦

Ψ𝜃𝑇
𝑥1 𝑥𝑇−1

Layer 1 Layer T
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The idea was successfully applied to other algorithms and many 
applications:

▸Iterative Shrinkage and Thresholding Algorithm (ISTA) 

   Signal processing: [Gregor and LeCun, 2010]

   Super-resolution: [Wang et al., 2015]

   computed tomography: [Jin et al., 2017]

▸Alternating direction method of multipliers-ADMM

   Rain removal: [Ding et al., 2018]

   Medical resonance imaging: [Yang et al., 2019]

▸Primal dual hybrid gradient-PDHG

   Computed tomography: [Adler-Ö ktem, 2018]

▸Proximal interior point

   Image deblurring: [Bertocchi, 2020]

▸Proximal gradient descent-PGD

   Medical resonance imaging: [Hosseini et al., 2019]

9
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▸In a nonlinear setting, most DuNets methods only use the current 
gradient, overlooking a significant amount of historical gradient data

   linear: 
𝜕 𝐴𝑥

𝜕𝑥𝑡
= A noninear: 

𝜕𝐴 𝑥

𝜕𝑥𝑡

▸How to use the historical gradient data more effectively? 

▸A possible answer: The momentum acceleration strategy

Computational challenges

10
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▸Gradient Descent    

    𝑥𝑡+1 = 𝑥𝑡 − α𝑔𝑡

▸Gradient descent is primarily sensitive to the choice of learning rate

▸Momentum can dampen oscillations in directions of high curvature, 
potentially leading to faster convergence in practice for some problems

▸Momentum may navigate more efficiently through poorly conditioned or 
non-convex landscapes

Momentum 

11

▸ Gradient Descent  with Momentum

    𝑣𝑡+1 = 𝛽𝑣𝑡 + 𝑔𝑡

    𝑥𝑡+1 = 𝑥𝑡 − α𝑣𝑡+1
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Unroll momentum

▸Unroll the velocity update step 𝑣𝑡+1 = 𝛽𝑣𝑡 + 𝑔𝑡, we have

𝑣1  = 𝛽𝑣0 + 𝑔0 = 𝑔0

 𝑣2 = 𝛽𝑣1 + 𝑔1 = 𝛽2𝑔0 + 𝛽𝑔1

…

                                              𝑣𝑡+1 = ∑𝑖=0
𝑡 𝛽𝑡−𝑖𝑔𝑖

   Then, we unroll the 𝑥𝑡+1 = 𝑥𝑡 − α𝑣𝑡, we have

𝑥𝑡+1 = 𝑥0 + 𝛼 

𝑖=0

𝑘
1 − 𝛽𝑘+1−𝑖

1 − 𝛽
𝑔𝑖

12
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Unroll momentum

▸Unroll the velocity update step 𝑣𝑡+1 = 𝛽𝑣𝑡 + 𝑔𝑡, we have

𝑣1  = 𝛽𝑣0 + 𝑔0 = 𝑔0

 𝑣2 = 𝛽𝑣1 + 𝑔1 = 𝛽2𝑔0 + 𝛽𝑔1

…

                                              𝑣𝑡+1 = ∑𝑖=0
𝑡 𝛽𝑡−𝑖𝑔𝑖

   Then, we unroll the 𝑥𝑡+1 = 𝑥𝑡 − α𝑣𝑡, we have

𝑥𝑡+1 = 𝑥0 + 𝛼 

𝑖=0

𝑘
1 − 𝛽𝑘+1−𝑖

1 − 𝛽
𝑔𝑖

▸Many optimization algorithms can be written in this unrolled form.

1 𝑥𝑡+1 = 𝑥0 + 𝛼 ∑𝑖=0
𝑘 𝛾𝑖

𝑘𝑔𝑖: Gradient descent(𝛾𝑖
𝑘 = 1), Conjugate gradient, AdaMax

   (2) 𝑥𝑡+1 = 𝑥0 + 𝛼 ∑𝑖=0
𝑘 Γ𝑖

𝑘𝑔𝑖:  AdaGrad, Adam 

▸Could one perhaps choose the  𝛼 and 𝛽 intelligently and adaptively?

13
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▸A more flexible scheme that uses the recurrent neural networks (RNN) 
to learn the velocity term

14

(1) 𝑥𝑡+1 = 𝑥0 + 𝛼 ∑𝑖=0
𝑘 𝛾𝑖

𝑘𝑔𝑖 2  𝑥𝑡+1 = 𝑥0 + 𝛼 ∑𝑖=0
𝑘 Γ𝑖

𝑘𝑔𝑖 

𝑥𝑡+1  = 𝑥0 + 𝑅𝑁𝑁(𝑔0, 𝑔1, ⋯ , 𝑔𝑡)

Recurrent Momentum Acceleration via deep RNN

Deep RNN

f
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▸A more flexible scheme that uses the recurrent neural networks (RNN) 
to learn the velocity term

15

(1) 𝑥𝑡+1 = 𝑥0 + 𝛼 ∑𝑖=0
𝑘 𝛾𝑖

𝑘𝑔𝑖 2  𝑥𝑡+1 = 𝑥0 + 𝛼 ∑𝑖=0
𝑘 Γ𝑖

𝑘𝑔𝑖 

𝑥𝑡+1  = 𝑥0 + Ξ𝜗(𝑔0, 𝑔1, ⋯ , 𝑔𝑡)

𝑧𝑡
𝑙 , ℎ𝑡

𝑙 , 𝑐𝑡
𝑙 = LSTM𝑙 𝑧𝑡

𝑙−1, ℎ𝑡−1
𝑙 , 𝑐𝑡−1

𝑙

Recurrent Momentum Acceleration via deep RNN
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▸A more flexible scheme that uses the recurrent neural networks (RNN) 
to learn the velocity term

16

ƿ𝑐𝑡 = tanh 𝑊ℎ𝑐ℎ𝑡−1
𝑙 + 𝑊𝑔𝑐𝑧𝑡

𝑙−1 + 𝑏𝑐

𝑓𝑡 = 𝜎 𝑊ℎ𝑥ℎ𝑡−1
𝑙 + 𝑊𝑔𝑥𝑧𝑡

𝑙−1 + 𝑏𝑥

𝑖𝑡 = 𝜎 𝑊ℎ𝑖ℎ𝑡−1
𝑙 + 𝑊𝑔𝑖𝑧𝑡

𝑙−1 + 𝑏𝑖

𝑜𝑡 = 𝜎 𝑊ℎ𝑜ℎ𝑡−1
𝑙 + 𝑊𝑔𝑜𝑧𝑡

𝑙−1 + 𝑏𝑜

𝑐𝑡 = 𝑓𝑡 ⊗ 𝑐𝑡−1 + 𝑖𝑡 ⊗ ƿ𝑐𝑡

ℎ𝑡 = 𝑜𝑡 ⊗ tanh 𝑐𝑡 = 𝑧𝑡

(1) 𝑥𝑡+1 = 𝑥0 + 𝛼 ∑𝑖=0
𝑘 𝛾𝑖

𝑘𝑔𝑖 2  𝑥𝑡+1 = 𝑥0 + 𝛼 ∑𝑖=0
𝑘 Γ𝑖

𝑘𝑔𝑖 

𝑥𝑡+1  = 𝑥0 + Ξ𝜗(𝑔0, 𝑔1, ⋯ , 𝑔𝑡)

Recurrent Momentum Acceleration via deep RNN
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▸Problem arg min
𝑥

 𝒟 𝒜 𝑥𝑡 , 𝑦 + 𝜆ℛ 𝑥

▸Proximal gradient descent (PGD) 

                                𝑥𝑡  = 𝒫𝜆ℛ(𝑥𝑡−1 − 𝛼𝑡𝑔𝑡−1)

▸LearnedPGD

    𝑥𝑡 = Ψ𝜃𝑡
𝑥𝑡−1, 𝑔𝑡−1 , for 𝑡 = 1, … , 𝑇.

  

▸Apply RMA to LPGD

LPGD-MA/RMA methods

17
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▸Problem arg min
𝑥

 𝒟 𝒜 𝑥𝑡 , 𝑦 + 𝜆ℛ 𝑥

▸Proximal gradient descent (PGD)

                                𝑥𝑡  = 𝒫𝜆ℛ(𝑥𝑡−1 − 𝛼𝑡𝑔𝑡−1)

▸LearnedPGD

    𝑥𝑡 = Ψ𝜃𝑡
𝑥𝑡−1, 𝑔𝑡−1 , for 𝑡 = 1, … , 𝑇.

  

▸Apply RMA to LPGD and LPSDSW(𝜃𝑡 = 𝜃, for t=1,….,T)

   

   LPGDSW-MA, LPGDSW-RMA

LPGD-MA/RMA methods

18
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▸Hybrid gradient primal-dual method
𝑢𝑡+1 = prox𝜎𝒜∗ 𝑢𝑡 + 𝜎𝒜 ᪄𝑥𝑡

                                      𝑥𝑡+1 = prox𝜏ℛ 𝑥𝑡 − 𝜏 𝜕𝒜 𝑥𝑡
∗ 𝑢𝑡+1

                                                ᪄𝑥𝑡+1 = 𝑥𝑡+1 + 𝛾 𝑥𝑡+1 − 𝑥𝑡    

▸Learned primal-dual (LPD), for 𝑡 = 1, … , 𝑇: 

                                    𝑢𝑡 = Γ𝜃𝑡
𝑑 𝑢𝑡−1, 𝒜 𝑥𝑡−1 , 𝑦

                                    𝑥𝑡 = Λ𝜃𝑡
𝑝 𝑥𝑡−1, 𝜕𝒜 𝑥𝑡−1

∗ 𝑢𝑡

▸Apply RMA to LPD

LPD-MA/RMA methods

19
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Numerical experiments

Example1: a nonlinear deconvolution

▸x ∈ ℝ53 and y ∈ ℝ12

▸Training set: Validation set: Test set = 10000:1000:1000

Examples 2: an electrical impedance tomography (EIT) image 
reconstruction

▸x ∈ ℝ1342 and y ∈ ℝ208

▸Training set: Validation set: Test set = 400:20:20

Network structures

▸LPGD-type: 𝑇 = 20     LPD-type: 𝑇 = 10, N𝑝𝑟𝑖𝑚𝑎𝑙 = N𝑝𝑟𝑖𝑚𝑎𝑙=5

▸Adam optimizer with cosine annealing

▸Training 20 epochs

▸Loss function

𝓁 Φ =
1

𝑁


𝑛=1

𝑁

ො𝑥𝑖 𝑦𝑖; Φ − 𝑥𝑖 2
2

20
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Inverse problem:  

Given the nonlinear convolution result 𝑦 via 𝑦 = 𝑎 ⋅ 𝑥′𝑊2𝑥 + 𝑤1
′𝑥 + 𝑏, we 

want to infer 𝑥. 

Results

Observation

Ground Truth
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• when a = 0 , 𝑦 = 0 ⋅ 𝑥′𝑊2𝑥 + 𝑤1
′𝑥 + 𝑏, DuNets methods are almost the 

same

Results

Observation

Ground Truth
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• when a = 0, DuNets methods are almost the same

• when a > 0, DuNets-RMA methods outperform other methods

Results

8%               12%            16%

Observation

Ground Truth
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• when a = 0, DuNets method are almost the same

• when a > 0, DuNets-RMA methods outperform other methods

• LPD-RMA is considerably more data efficient 

Results

Observation

Ground Truth
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Application: EIT inverse problem

▸Mathematical model of EIT

   Conductivity equation:

                          ∇ ⋅ 𝜎 ∇𝑢 = 0 in Ω

   Boundary conditions (known):

                    Voltages:      𝑢 = 𝑉 | 𝜕Ω (Dirichlet BC) 

                    Currents:      𝜎
𝜕𝑢

𝜕𝑒
 = 𝐼 | 𝜕Ω(Neumann BC)

   Dirichlet-to-Neumann (DN) map:  Λ𝜎: 𝑢 | 𝜕Ω → 𝜎
𝜕𝑢

𝜕𝑒
| 𝜕Ω

▸The EIT inverse problem: given known Λ𝜎  , recover 𝜎 in Ω 

▸We discretize the object domain and define a mapping 𝐹 representing the 
discrete version of the forward operator:

𝑣 = 𝐹(𝜎) + 𝜂

25
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Results : two circles

• DuNets-RMA models yield accurate reconstruction for all the inclusions
with different geometry and topology

Observation

Ground Truth

Truth GN LPGD-RMA LPD-RMA
LPGDSW

-RMA
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Results: two circles

• DuNets-RMA models yield accurate reconstruction for all the inclusions 

DuNets-RMA models achieve the best performance in all but one case 

(LPGDSW method with 50 training samples) 

Observation

Ground Truth
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• DuNets-RMA models yield accurate reconstruction for all the inclusions 

having different geometry and topology

• DuNets-RMA models achieve the best performance in all but one case 

(LPGDSW method with 50 training ……samples)

• DuNets-RMA scheme has better stability and data efficiency

LPGD LPGDSW LPD

Results: two circles

Observation

Ground Truth
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Results: four circles

• The number of inclusions affects the quality of the reconstructions, slightly 

corrupting the identification of the different anomalies.

Observation

Ground Truth

Truth GN LPGD-RMA LPD-RMA
LPGDSW

-RMA
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Results: four circles

• The number of inclusions affects the quality of the reconstructions, slightly 

corrupting the identification of the different anomalies.

• DuNets-RMA models achieve the best performance in all cases

Observation

Ground Truth

two
circles
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• The number of inclusions affects the quality of the reconstructions, slightly 

corrupting the identification of the different anomalies.

• DuNets-RMA models achieve the best performance in all cases

• DuNets-RMA scheme has better stability and data efficiency

LPGD LPGDSW LPD

Results: two circles

Observation

Ground Truth
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Summary

▸We develop a new deep unrolling networks incorporating recurrent 
momentum acceleration for solving nonlinear inverse problem more 
accurate

▸Future research direction

   -  theoretical analysis, such as convergence

   -  design an unrolling structure based on PDE's theoretical properties

▸Check our paper for more

Zhou, Q., Qian, J., Tang, J., & Li, J. (2023). Deep Unrolling Networks with Recurrent  
Momentum Acceleration for Nonlinear Inverse Problems. 
https://arxiv.org/abs/2307.16120

32
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