

International Congress on Industrial and Applied Mathematics Waseda University, Tokyo, Japan August 20-25, 2023

Deep Unrolling Networks with Recurrent Momentum Acceleration

for Nonlinear Inverse Problems

Qingping Zhou¹ *in collaboration with* Jiayu Qian¹, Junqi Tang², and Jinglai Li²

¹ School of Mathematics and Statistics, Central South University, China

² School of Mathematics, University of Birmingham, UK

August 25th, 2023

What is an Inverse Problem?

Formulation of an inverse problem

 $y = \mathcal{A}(x) + \epsilon,$

where \mathcal{A} represents a forward operator and ϵ is the observation noise. We want to infer a quantity x from indirect observations y.

Examples: Electrical Impedance Tomography

 $\mathcal{A}(x) = A(x)$ is nonlinear. A few research papers! (This talk)

Computational Challenges

- ill-posed
- Iarge-scale nature

Computational Challenges

- ill-posed
- large-scale nature
- lack of relevant training data

This may be irrelevant in settings with lots of training data

but is critical in more limiteddata settings

Al-driven methods for Inverse Problems

Fully data-driven methods: train an input-to-solution DNN

- fast inference: fewer layers than classic optimization iterations
- slow training: too many parameters
- Inaccurate solutions: poor generalization

Model-based methods: modify classical optimization algorithms

- deep unrolling networks (DuNets), a.k.a algorithm unrolling (this talk)
- Plug-and-play
- Deep equilibrium or fixed-point network

▶ ...

Deep unrolling networks (DuNets)

- DuNets consists of two steps
- (1) Pick a classic iterative optimization algorithm and unroll it to an DNN
- (2) Select a set of DNN parameters to learn

• Example: assume y = Ax + noise; recover x by minimizing $\underset{x' \in X}{\operatorname{arg\,min}} \frac{1}{2} \|Ax - b\|_{2}^{2} + \lambda \mathcal{R}(x)$

Deep unrolling networks (DuNets)

- DuNets consists of two steps
- (1) Pick a classic iterative optimization algorithm and unroll it to an DNN
- (2) Select a set of DNN parameters to learn

► Example: assume y = Ax + noise; recover x by minimizing $\underset{x' \in X}{\arg \min} \frac{1}{2} \|Ax - b\|_{2}^{2} + \lambda \mathcal{R}(x)$

Proximal gradient descent (PGD):

$$x_t = \mathcal{P}_{\lambda \mathcal{R}}(x_{t-1} - \alpha \mathbf{A}^T (A x_{t-1} - y)),$$

where $\mathcal{P}_{\lambda \mathcal{R}}(\cdot)$ is the proximal operator:

$$\mathcal{P}_{\lambda \mathcal{R}}(x) = \underset{x' \in X}{\operatorname{arg\,min}} \frac{1}{2} \|x' - x\|_X^2 + \lambda \mathcal{R}(x').$$

Learned Proximal gradient descent (LPGD)

► Introduce
$$W_e = \alpha A^T$$
 and $W_t = I - \alpha A^T A$, rewrite PGD as
 $x_t = \mathcal{P}_{\lambda \mathcal{R}}(W_t x_{t-1} + W_e y).$

• LearnedPGD: replace $\mathcal{P}_{\lambda \mathcal{R}}$ with learned network Ψ_{θ_t}

$$x_t = \Psi_{\theta_t}(W_t x_{t-1} + W_e y), \text{ for } t = 1, \dots, T,$$

which resembles a DNN

The idea was successfully applied to other algorithms and many applications:

Iterative Shrinkage and Thresholding Algorithm (ISTA)

Signal processing: [Gregor and LeCun, 2010]

Super-resolution: [Wang et al., 2015]

computed tomography: [Jin et al., 2017]

Alternating direction method of multipliers-ADMM

Rain removal: [Ding et al., 2018]

Medical resonance imaging: [Yang et al., 2019]

- Primal dual hybrid gradient-PDHG Computed tomography: [Adler-Öktem, 2018]
- Proximal interior point

Image deblurring: [Bertocchi, 2020]

Proximal gradient descent-PGD

Medical resonance imaging: [Hosseini et al., 2019]

Computational challenges

In a nonlinear setting, most DuNets methods only use the current gradient, overlooking a significant amount of historical gradient data

linear:
$$\frac{\partial Ax}{\partial x_t} = A$$
 noninear: $\frac{\partial A(x)}{\partial x_t}$

How to use the historical gradient data more effectively?

A possible answer: The momentum acceleration strategy

Momentum

- Gradient Descent
 - $x_{t+1} = x_t \alpha g_t$

• Gradient Descent with Momentum $v_{t+1} = \beta v_t + g_t$ $x_{t+1} = x_t - \alpha v_{t+1}$

- Gradient descent is primarily sensitive to the choice of learning rate
- Momentum can dampen oscillations in directions of high curvature, potentially leading to faster convergence in practice for some problems
- Momentum may navigate more efficiently through poorly conditioned or non-convex landscapes

Unroll momentum

• Unroll the velocity update step $v_{t+1} = \beta v_t + g_t$, we have $v_1 = \beta v_0 + g_0 = g_0$ $v_2 = \beta v_1 + g_1 = \beta^2 g_0 + \beta g_1$

 $v_{t+1} = \sum_{i=0}^{t} \beta^{t-i} g_i$ Then, we unroll the $x_{t+1} = x_t - \alpha v_t$, we have

$$x_{t+1} = x_0 + \alpha \sum_{i=0}^k \frac{\left(1 - \beta^{k+1-i}\right)}{1 - \beta} g_i$$

. . .

Unroll momentum

• Unroll the velocity update step $v_{t+1} = \beta v_t + g_t$, we have $v_1 = \beta v_0 + g_0 = g_0$ $v_2 = \beta v_1 + g_1 = \beta^2 g_0 + \beta g_1$

Then, we unroll the $x_{t+1} = x_t - \alpha v_t$, we have

$$x_{t+1} = x_0 + \alpha \sum_{i=0}^{k} \frac{\left(1 - \beta^{k+1-i}\right)}{1 - \beta} g_i$$

. . .

 $v_{t+1} = \sum_{i=0}^{t} \beta^{t-i} g_i$

Many optimization algorithms can be written in this unrolled form.
 (1) x_{t+1} = x₀ + α Σ_{i=0}^k γ_i^k g_i: Gradient descent(γ_i^k = 1), Conjugate gradient, AdaMax
 (2) x_{t+1} = x₀ + α Σ_{i=0}^k Γ_i^k g_i: AdaGrad, Adam

• Could one perhaps choose the α and β intelligently and adaptively?

Recurrent Momentum Acceleration via deep RNN

A more flexible scheme that uses the recurrent neural networks (RNN) to learn the velocity term

(1)
$$x_{t+1} = x_0 + \alpha \sum_{i=0}^{k} \gamma_i^k g_i$$
 (2) $x_{t+1} = x_0 + \alpha \sum_{i=0}^{k} \Gamma_i^k g_i$
 $x_{t+1} = x_0 + RNN(g_0, g_1, \dots, g_t)$

Recurrent Momentum Acceleration via deep RNN

A more flexible scheme that uses the recurrent neural networks (RNN) to learn the velocity term

(1)
$$x_{t+1} = x_0 + \alpha \sum_{i=0}^k \gamma_i^k g_i$$
 (2) $x_{t+1} = x_0 + \alpha \sum_{i=0}^k \Gamma_i^k g_i$
 $x_{t+1} = x_0 + \Xi_{\vartheta}(g_0, g_1, \cdots, g_t)$

$$(z_t^l, h_t^l, c_t^l) = \text{LSTM}^l(z_t^{l-1}, h_{t-1}^l, c_{t-1}^l)$$

Recurrent Momentum Acceleration via deep RNN

A more flexible scheme that uses the recurrent neural networks (RNN) to learn the velocity term

(1)
$$x_{t+1} = x_0 + \alpha \sum_{i=0}^{k} \gamma_i^k g_i$$
 (2) $x_{t+1} = x_0 + \alpha \sum_{i=0}^{k} \Gamma_i^k g_i$
 $x_{t+1} = x_0 + \Xi_{\vartheta}(g_0, g_1, \cdots, g_t)$

$$\begin{split} \tilde{c}_t &= \tanh\left(W_{hc}h_{t-1}^l + W_{gc}z_t^{l-1} + b_c\right)\\ f_t &= \sigma\left(W_{hx}h_{t-1}^l + W_{gx}z_t^{l-1} + b_x\right)\\ i_t &= \sigma\left(W_{hi}h_{t-1}^l + W_{gi}z_t^{l-1} + b_i\right)\\ o_t &= \sigma\left(W_{ho}h_{t-1}^l + W_{go}z_t^{l-1} + b_o\right)\\ c_t &= f_t \otimes c_{t-1} + i_t \otimes \tilde{c}_t\\ h_t &= o_t \otimes \tanh(c_t) = z_t \end{split}$$

LPGD-MA/RMA methods

• Problem
$$\underset{x}{\operatorname{arg\,min}} \mathcal{D}(\mathcal{A}(x_t), y) + \lambda \mathcal{R}(x)$$

Proximal gradient descent (PGD)

$$x_t = \mathcal{P}_{\lambda \mathcal{R}}(x_{t-1} - \alpha_t g_{t-1})$$

LearnedPGD

$$x_t = \Psi_{\theta_t}(x_{t-1}, g_{t-1})$$
, for $t = 1, ..., T$.

Apply RMA to LPGD

Algorithm 3 LPGD-MA	Algorithm 4 LPGD-RMA algorithm
Input: $x_0 \in X, v_0 = 0$	Input: $x_0 \in X, h_0 = 0, c_0 = 0$
Output: x_T	Output: x_T
1: for $t = 1,, T$ do	1: for $t = 1,, T$ do
2: $g_{t-1} = \nabla_{x_{t-1}} \mathcal{D}(\mathcal{A}(x_{t-1}), y)$	2: $g_{t-1} = \nabla_{x_{t-1}} \mathcal{D}(\mathcal{A}(x_{t-1}), y)$
3: $v_t = \gamma v_{t-1} - \eta g_{t-1}$	3: $(v_t, h_t, c_t) = \Xi_{\vartheta}(g_{t-1}, h_{t-1}, c_{t-1})$
4: $x_t = \Psi_{\theta_t}(x_{t-1}, v_t)$	4: $x_t = \Psi_{\theta_t}(x_{t-1}, v_t)$
5: end for	5: end for

LPGD-MA/RMA methods

• Problem
$$\underset{x}{\operatorname{arg\,min}} \mathcal{D}(\mathcal{A}(x_t), y) + \lambda \mathcal{R}(x)$$

Proximal gradient descent (PGD)

$$x_t = \mathcal{P}_{\lambda \mathcal{R}}(x_{t-1} - \alpha_t g_{t-1})$$

LearnedPGD

$$x_t = \Psi_{\theta_t}(x_{t-1}, g_{t-1})$$
, for $t = 1, ..., T$.

• Apply RMA to LPGD and LPSDSW($\theta_t = \theta$, for t=1,...,T)

LPGDSW-MA, LPGDSW-RMA

LPD-MA/RMA methods

Hybrid gradient primal-dual method

$$u_{t+1} = \operatorname{prox}_{\sigma\mathcal{A}^*} (u_t + \sigma\mathcal{A}(\bar{x}_t))$$

$$x_{t+1} = \operatorname{prox}_{\tau\mathcal{R}} (x_t - \tau[\partial\mathcal{A}(x_t)]^*(u_{t+1}))$$

$$\bar{x}_{t+1} = x_{t+1} + \gamma(x_{t+1} - x_t)$$

• Learned primal-dual (LPD), for t = 1, ..., T:

$$u_t = \Gamma_{\theta_t^d}(u_{t-1}, \mathcal{A}(x_{t-1}), y)$$
$$x_t = \Lambda_{\theta_t^p}(x_{t-1}, [\partial \mathcal{A}(x_{t-1})]^*(u_t))$$

Apply RMA to LPD

Algorithm 5 LPD-MA algorithmInput: $x_0 \in X^{N_{\text{primal}}}, u_0 \in Y^{N_{\text{dual}}}$ Output: $x_T^{(1)}$ 1: for $t = 1, \dots, T$ do2: $u_t = \Gamma_{\theta_t^d} \left(u_{t-1}, \mathcal{A}(x_{t-1}^{(2)}), y \right)$ 3: $g_{t-1} = \left[\partial \mathcal{A}(x_{t-1}^{(1)}) \right]^* u_t^{(1)}$ 4: $v_t = \gamma v_{t-1} - \eta g_{t-1}$ 5: $x_t = \Lambda_{\theta_t^p} \left(x_{t-1}, v_t \right)$ 6: end for

 $\begin{array}{c} \hline \textbf{Algorithm 6 LPD-RMA algorithm} \\ \hline \textbf{Input: } x_0 \in X^{N_{\text{primal}}}, u_0 \in Y^{N_{\text{dual}}}, h_0 = 0, c_0 = 0 \\ \hline \textbf{Output: } x_T^{(1)} \\ 1: \ \textbf{for } t = 1, \dots, T \ \textbf{do} \\ 2: \quad u_t = \Gamma_{\theta_t^d} \left(u_{t-1}, \mathcal{A}(x_{t-1}^{(2)}), y \right) \\ 3: \quad g_{t-1} = \left[\partial \mathcal{A}(x_{t-1}^{(1)}) \right]^* (u_t^{(1)}) \\ 4: \quad (v_t, h_t, c_t) = \Xi_{\theta} \left(g_{t-1}, h_{t-1}, c_{t-1} \right) \\ 5: \quad x_t = \Lambda_{\theta_t^p} \left(x_{t-1}, v_t \right) \\ 6: \ \textbf{end for} \end{array}$

Numerical experiments

Example1: a nonlinear deconvolution

- $x \in \mathbb{R}^{53}$ and $y \in \mathbb{R}^{12}$
- Training set: Validation set: Test set = 10000:1000:1000

Examples 2: an electrical impedance tomography (EIT) image reconstruction

- $x \in \mathbb{R}^{1342}$ and $y \in \mathbb{R}^{208}$
- Training set: Validation set: Test set = 400:20:20

Network structures

- LPGD-type: T = 20 LPD-type: T = 10, $N^{primal} = N^{primal} = 5$
- Adam optimizer with cosine annealing
- Training 20 epochs
- Loss function

$$\ell(\Phi) = \frac{1}{N} \sum_{n=1}^{N} \|\hat{x}_i(y_i; \Phi) - x_i\|_2^2$$

Inverse problem: Given the nonlinear convolution result *y* via $y = a \cdot x'W_2x + w'_1x + b$, we want to infer *x*.

Results

	a = 0
LPGD	
LPGD-MA	3.21E-02
LPGD-RMA	3.23E-02
LPGDSW	3.01E-02
LPGDSW-MA	3.02E-02
LPGDSW-RMA	3.01E-02
LPD	2.69 E- 02
LPD-MA	2.68E-02
LPD-RMA	$2.67 \text{E}{-}02$

• when a = 0 , $y = 0 \cdot x' W_2 x + w'_1 x + b$, DuNets methods are almost the same

Results

- when a = 0, DuNets methods are almost the same
- when a > 0, DuNets-RMA methods outperform other methods

Results

- when a = 0, DuNets method are almost the same
- when a > 0, DuNets-RMA methods outperform other methods
- · LPD-RMA is considerably more data efficient

Application: EIT inverse problem

Mathematical model of EIT

Conductivity equation:

 $\nabla \cdot (\sigma \nabla u) = 0$ in Ω

Boundary conditions (known):

Voltages: $u = V \mid_{\partial\Omega}$ (Dirichlet BC) Currents: $\sigma \frac{\partial u}{\partial e} = I \mid_{\partial\Omega}$ (Neumann BC) Dirichlet-to-Neumann (DN) map: $\Lambda_{\sigma}: u \mid_{\partial\Omega} \rightarrow \sigma \frac{\partial u}{\partial e} \mid_{\partial\Omega}$

• The EIT inverse problem: given known Λ_{σ} , recover σ in Ω

• We discretize the object domain and define a mapping *F* representing the discrete version of the forward operator:

$$v = F(\sigma) + \eta$$

Results : two circles

 DuNets-RMA models yield accurate reconstruction for all the inclusions with different geometry and topology

Results: two circles

• · · · ·			50	200	400
Observation	LPGD				
a_{32}	LPGD-M	ЛА	6.13E-03 (± 16.1E-04)	5.17E-03 (± 14.1E-04)	4.18E-03 (± 10.5E-04)
	LPGD-F	RMA	$\frac{3.02\text{E-03}}{(\pm 1.34\text{E-04})}$	$\frac{2.48\text{E-03}}{(\pm 1.08\text{E-04})}$	$\frac{2.25\text{E-03}}{(\pm 1.41\text{E-04})}$
	LPGDS	W	4.33E-03 (± 13.7E-04)	2.87E-03 (± 1.15E-04)	3.07E-03 (± 1.86E-04)
	LPGDS	W-MA	$\frac{3.81\text{E-03}}{(\pm 3.15\text{E-04})}$	2.92E-03 (± 1.40\text{E-}04)	2.95E-03 (± 1.55E-04)
Ground Truth	LPGDS	W-RMA	3.92E-03 (± 4.79E-04)	$\frac{2.65\text{E-03}}{(\pm 1.99\text{E-04})}$	$\frac{2.63\text{E}-03}{(\pm 1.14\text{E}-04)}$
	LPD		3.25E-03 (± 1.87E-04)	2.55E-03 (± 1.34E-04)	2.35E-03 (± 2.13E-04)
	LPD-MA	A	3.29E-03 (± 1.09E-04)	2.71E-03 (± 1.46E-04)	2.44E-03 (± 1.64E-04)
	LPD-RM	ЛА	$\frac{3.11\text{E-03}}{(\pm 1.52\text{E-04})}$	$\frac{2.17\text{E-03}}{(\pm 1.36\text{E-04})}$	2.04E-03 (± 1.89E-04)
	2				

 DuNets-RMA models yield accurate reconstruction for all the inclusions DuNets-RMA models achieve the best performance in all but one case (LPGDSW method with 50 training samples)

Results: two circles

- DuNets-RMA models yield accurate reconstruction for all the inclusions having different geometry and topology
- DuNets-RMA models achieve the best performance in all but one case (LPGDSW method with 50 trainingsamples)
- DuNets-RMA scheme has better stability and data efficiency

Results: four circles

• The number of inclusions affects the quality of the reconstructions, slightly corrupting the identification of the different anomalies.

Results: four circles

two circles

	data size	50	200	400	400
Observation	LPGD				
	LPGD-MA	10.3E-03 (± 1.54E-04)	8.60E-03 (± 1.45E-04)	7.87E-03 (± 1.15E-04)	4.18E-03 (± 10.5E-04)
	LPGD-RMA	7.87E-03 (± 1.46E-04)	7.43E-03 (± 1.27E-04)	$\frac{6.66\text{E-03}}{(\pm 1.28\text{E-04})}$	$\frac{2.25\text{E-03}}{(\pm 1.41\text{E-04})}$
	LPGDSW	7.81E-03 (± 1.07E-04)	6.88E-03 (± 2.13E-04)	6.69E-03 (± 2.39E-04)	3.07E-03 (± 1.86E-04)
o 50 100 150 200	LPGDSW-MA	6.96E-03 (± 5.04E-04)	5.46E-03 (± 2.01E-04)	5.53E-03 (± 2.26E-04)	2.95E-03 (± 1.55E-04)
Ground Truth	LPGDSW-RMA	6.82E-03 (± 3.42E-04)	5.16E-03 (± 2.26E-04)	$\frac{5.02\text{E-}03}{(\pm 2.15\text{E-}04)}$	$\frac{2.63\text{E-03}}{(\pm 1.14\text{E-04})}$
	LPD	6.66E-03 (± 2.72E-04)	5.46-03 (± 1.90E-04)	5.10E-03 (± 1.71E-04)	2.35E-03 (± 2.13E-04)
	LPD-MA	6.32E-03 (± 1.95E-04)	5.49E-03 (± 1.63E-04)	5.18E-03 (± 1.86E-04)	2.44E-03 (± 1.64E-04)
	LPD-RMA	6.01E-03 (± 1.60E-04)	5.13E-03 (± 1.91E-04)	$\frac{4.93\text{E-}03}{(\pm 1.49\text{E-}04)}$	$\frac{2.04\text{E-03}}{(\pm 1.89\text{E-04})}$

- The number of inclusions affects the quality of the reconstructions, slightly corrupting the identification of the different anomalies.
- · DuNets-RMA models achieve the best performance in all cases

Results: two circles

- The number of inclusions affects the quality of the reconstructions, slightly corrupting the identification of the different anomalies.
- DuNets-RMA models achieve the best performance in all cases
- DuNets-RMA scheme has better stability and data efficiency

Summary

We develop a new deep unrolling networks incorporating recurrent momentum acceleration for solving nonlinear inverse problem more accurate

- Future research direction
 - theoretical analysis, such as convergence
 - design an unrolling structure based on PDE's theoretical properties
- Check our paper for more

Zhou, Q., Qian, J., Tang, J., & Li, J. (2023). Deep Unrolling Networks with Recurrent Momentum Acceleration for Nonlinear Inverse Problems. <u>https://arxiv.org/abs/2307.16120</u>

Reference

- ▶ K. Gregor and Y. LeCun, "Learning Fast Approximations of Sparse Coding," in Proc. Int. Conf. Machine Learning, 2010.
- Lohit, Suhas, et al. "Unrolled projected gradient descent for multi-spectral image fusion." ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019.
- Mardani, Morteza, et al. "Neural proximal gradient descent for compressive imaging." Advances in Neural Information Processing Systems 31 (2018).
- Qian, Ning. "On the momentum term in gradient descent learning algorithms." Neural networks 12.1 (1999): 145-151.