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Inverse problems

medical imaging remote sensing deblurring

• Various sources of uncertainty in such problems: observation
noise, model error, numerical error...
The estimation results have uncertainty!

• Data are inevitably incomplete and corrupted by noise, rendering
the problem ill-posed.
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Linear Gaussian inverse problems

Many real-world inverse problems, like X-ray CT, remote sensing,
deblurring, can be modeled as Gaussian-linear problems:

y = Gx + η

where x ∈ Rn: unknown, y ∈ Rm: data , G ∈ Rm×n: forward
operator, η is observation error

Giving observations η = N(0,Γobs) and prior x = N(0,Γpr), it
turns out that the posterior distribution is also Gaussian:
x|y ∼ N(µpos,Γpos), with

µpos = ΓposG
>Γ−1

obs y and Γpos =
(
H + Γ−1

pr

)−1
,

where H = G>Γ−1
obsG is the Hessian of the log-likelihood.
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Empirical Bayes

• In practice, the prior and/or the likelihood function may contain
unspecified hyperparameters.

• An commonly used strategy is the empirical Bayes (EB)
approach, which first estimates the hyperparameters by
maximizing their marginal likelihood function:

θ∗ = arg max
θ∈Θ

π(y|θ) :=

∫
π(y|x, θ)π(x|θ)dx,

and then plugs in the estimated values to compute the posterior
of the inversion parameters:

π∗(x|y) ∝ π(y|x, θ∗)π(x|θ∗).
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Maximum likelihood estimaton
• It is easy to see that maximizing π(y|θ) is equivalent to

minimizing the negative log marginal likelihood:

min
θ∈Θ

L(θ, z) := min
θ∈Θ
− log π(y|θ)

and for the linear-Gaussian problems, it can be derived,

L(θ, z) =
1

2
yTΓ−1

obsy +
1

2
log |Γobs| −

1

2
zTΓposz +

1

2
log
|Γpr|
|Γpos|

,

where G, Γpr and Γobs depend on θ and z = GTΓ−1
obsy.

• Direct evaluation of L(θ, z) is not desirable for large scale
problems, as it requires several operations with O(n3) complexity.

• In what follows, we present an accurate and efficient—with
O(n2r) complexity for some r � n—method to approximate
L(θ), based on a rank-r update approximation of Γpos.
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Low-rank approximation
• Dimension reduction: data only informative in a low-dimensional

subspace of the prior
state space.
Γpos differs from Γpr

in a relatively small
number of directions.

Parameter Dim Redu: Intrinsic dimension

Gaussian posterior fi(x |yo) = N (mpos, �pos)

Posterior covariance �≠1
pos = �≠1

pr + H

Data misfit Hessian H = F € �≠1
obs F

�pos �pr �pr F� ��1
y F �pr

= �Woodbury

Low rank

where �y = F �pr F € + �obs.

Low dimensionality lies in the change from prior to posterior
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(update	matrix)

Woodbury

• Note that the update can be expressed as,

U = ΓprG
>Γ−1

y GΓpr, Γy = Γobs +GΓprG
>.

• This update of Γpr is negative semidefinite (namely, U � 0),
because the data add information; they cannot increase the prior
variance in any direction.

Spantini et al., Optimal low-rank approximations of Bayesian linear inverse

problems, SIAM Journal on Scientific Computing (2015).
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Low-rank approximation

• Idea: to find a low-rank approximation of U, say Û, and
approximate the posterior covariance as Γ̂pos = Γpr − Û.

• The low-rank update:

Û =

r∑

i=1

δ2
i

(
1 + δ2

i

)−1
ŵiŵ

>
i ,

where Γpr = Spr S
>
pr and Ĥ = S>prH Spr, and ŵi = Sprwi and

(δ2
i ,wi) are the eigenvalue-eigenvector pairs of Ĥ with the

ordering δ2
i ≥ δ2

i+1.

• As a result, we obtain an approximate objective function:

L̂(θ, z) =
1

2
yTΓ−1

obsy +
1

2
log |Γobs| −

1

2
zT Γ̂posz +

1

2
log
|Γpr|
|Γ̂pos|

,
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Minimax optimality

Theorem
Suppose that we approximate L(θ, z) with L′(θ, z) for some matrix
Γ̂pos ∈M ′r. The matrix Γ̂pos given by

Γ̂pos = Γpr − Û , BB> =
∑r

i=1 δ
2
i

(
1 + δ2

i

)−1
ŵiŵ

>
i ,

achieves the minimax approximation error, i.e., it solves

min
Γ̂pos∈M ′

r

max
z∈Zc

|∆L(θ, z)|,

where M ′r =
{

Γ̂pos = (Γpr − Û) : Γ̂pos − Γpos � 0, rank(Û) ≤ r
}
,

∆L = L(θ, z)− L′(θ, z) and Zc = {‖z‖2 ≤ C}, i.e. the
transformed data z is bounded.

That is, the low-rank approximation is optimal in the minimax
sense: the largest possible error maxy∈Y |L(θ,y)− L̂(θ,y)| is

minimized for all Û with a given rank r.
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Numerical implementation

• Two intensive steps (O(n3) complexity) in computing the low
rank update:

- Compute the square root of the prior covariance: Γpr = Spr S
>
pr.

- Eigenvalue decomposition of Ĥ = S>prH Spr.

• Randomized SVD requires to compute ĤΩ = S>prH SprΩ, and so
we only need to compute the the matrix product SprΩ.

• Chebyshev spectral method for computing SprΩ: suppose that D
is a real symmetric positive definite matrix. There exists a
polynomial p(·) such that

√
D = p(D).

Halko et. al, Finding structure with randomness: Probabilistic algorithms for
constructing approximate matrix decompositions, SIAM Review (2011).

Jiang et. al, A fast algorithm for Brownian dynamics simulation with hydrodynamic

interactions, Mathematics of Computation (2013).
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X-ray computerized tomography

Total variation and nonlocal functionals based tomographic reconstruction

Introduction

Context

Elementary example: 2D parallel x-rays tomography

X-ray

✓

f(x)

P✓
(t)

L

t

Principe:

Object: f(x) (unknown)

X-ray beam: L(✓, t)

Incident Photons number: N0

Observed Photons number: NL
Radon transform: R

P✓(t) = Rf :
R
L f(x)ds = log( N0

NL
)

Tomographic reconstruction

Known sinogram (⇡ N2)
pi = P✓i

(ti) + ✏i

Phantom to reconstruct (N2)
fn := f(xn)

5/46

• u(x): unknown

• L(θ, t): X-ray beam

• Radon Transform:

ψ(t, θ) = Af =
∫

L(θ,t) f(x)|dx|.

• the observed data y depends on
the (noise-free) sinogram ψ(t, θ)

• Goal: reconstruct f(x) and
quantify the uncertainty in
the reconstruction.

Method

Radon
=======)
Transform
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Inference results

• Use a Gaussian prior with mean µ and Matérn covariance:

K(t, t′) = σ2 21−ν

Γ(ν)

(√
2νd(t, t′)

)ν
Bν

(√
2νd(t, t′)

)
,

where d(t, t′) =
√

(t1 − t′1)2/ρ2
1 + (t2 − t′2)2/ρ2

2 . We also
assume that the variance ε of the measurement noise is not
available.

• We recover the image using the hyperparameters estimated with
different ranks:
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PSNR vs Rank
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Conclusions

• For large scale problems, evaluation hyperparameters by
maximizing its likelihood function can be highly computationally
intensive.

• we present an accurate and efficient—with O(rn2) complexity for
some r � n—method to approximate marginal likelihood, based
on a rank-r update approximation of posterior covariance.

• We develop a low-rank approximation method that allows us to
efficiently compute the likelihood function, and we are able to
show that it is the optimal approximation in the minimax sense.
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Thank you for your attention
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