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Bayesian inverse problem:
infer input parameters from observations using MCMC

X is a separable Hilbert space equipped with inner product < ·, · >.
The norm in this space ‖ · ‖2C is derived by < C−1/2·,C−1/2· >

A typical inverse problem assumes that the unknown u is mapped to the
data y via a forward model:

y = G (u) + ζ (1)

where G : X → Rd . ζ is the observational noise and is usually defined as a
d-dimensional centered Gaussian measure N(0,Cζ).

The Bayesian framework of inverse problem

Given the prior µ0(u) of u,the solution can be obtained by sampling from
the posterior probability measure µy (u),for u given y .
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Bayesian inverse problem:
infer input parameters from observations using MCMC

The posterior measure µy of u conditional on data y is provided by the
Radon-Nikodym derivative:

dµy

dµ0
(u) =

1

Z
exp(−Φy (u)) (2)

where Z =
∫
exp(−Φy (u))µ0(du), and µ0 ∼ N(0,C ).

The posterior probability measure µy (du) is given by:

µy (du) ∝ exp(−Φy (u)µ0(du) (3)

Remind the forward model,we can obtain Φ(u) = 1
2 |C
−1/2
ζ (G (u)− y)|22.

Without causing any ambiguity, we can drop the superscript y in Φy and
µy for simplicity.
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Review of a classical MCMC algorithm

Suppose we want to get samples from the target measure µ(u), the
general MCMC procedure is as following:

1 Initialize u(k) = u0 and set k = 0

2 Propose v (k) from the proposal density q(u(k), ·)
3 Compute a(u(k), v (k)) = min{1, µ(v

(k))

µ0(u(k))

q(u(k),v (k))

q(v (k),u(k))
}.

4 If a(u(k), v (k)) > rand([0, 1]),then
Accept: u(k+1) = v (k)

Otherwise
Reject: u(k+1) = u(k)

End If

5 k ← k + 1
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Benefits of hybrid adaptive pCN

pCN is dimensional independent,which make it possible to infer the
unknown in high-dimensional or infinite space like function spaces.
Hybrid adaptive pCN can further improve the efficiency of pCN via
selecting the suitable way of which updates the posterior covariance Σ
of the projection space.

(a) normal Σ (b) adaptive Σ
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Adaptive MCMC

Effectiveness of MCMC

The performance of MCMC heavily depends on how the proposal
distribution fits the target distribution.

Adaptive MCMC starts with an initial guess of the post covariance Σ and
then updates it based on the sample path.Given a set of samples
{x1, ..., xn, ...}. We can update Σ with

x̂ =
1

n

n∑
i=1

xi , (4a)

Σ̂ =
1

n − 1

n∑
i=1

(xi − x̂)(xi − x̂)T + δI , (4b)

where δ is a small positive constant and I is the identity matrix. The term
δI is introduced to stabilize the iteration.
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Preconditioned Crank-Nicolson(pCN)

The pCN method proposes new sample according to the equation:

v = (1− β2)
1
2 u + βω, (5)

where β ∈ [0, 1] and ω ∼ N(0,C ).
The accept probability is

a(u, v) = min{1, exp (Φ(u)− Φ(v))}. (6)

what we do in reality?

We can proof that there exists a complete orthonormal basis {ej}j∈N and
a sequence of non-negative numbers {αj}j∈N such that Cej = αjej .
The space expanded by {ej}Nj=1 is chosen to be the projection space.
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Structure of hybrid adaptive pCN

The hybrid adaptive pCN performs an adaptive Metropolis scheme in a
chosen finite dimensional subspace and a standard pCN algorithm in the
complement space of the chosen subspace.
Define ui = 〈u, ei 〉 and vi = 〈v , ei 〉.The basic idea of hybrid adaptive pCN
is as following:

vi =

{
ui + βwi for i ≤ J,

(1− β2)
1
2 ui + βwi for i > J,

(7)

where β ∈ [0, 1], (w1, ...,wJ)T ∼ N(0,Σ) and wi ∼ N(0, αi ) for i > J.
The accept probability of hybrid pCN is

a(u, v) = min{1, exp[Φ(u)− Φ(v) +
1

2

J∑
i=1

u2i − v2i
αi

]}. (8)
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Compared method:Adaptive pCN(ApCN)

The basic idea of ApCN is as following:

vi =

{
(1− β2λi/αi )

1
2 ui + βwi where wi ∼ N(0, λi ) for i ≤ J

(1− β2)
1
2 ui + βwi where wi ∼ N(0, αi ) for i > J

(9)

where β ∈ [0, 1] and λi = 〈Cei , ei 〉−1.

The accept probability of ApCN is

a(u, v) = min{1, exp[Φ(u)− Φ(v)]}. (10)

Hu, Z., Yao, Z., Li, J. (2015). On an adaptive preconditioned
crank-nicolson algorithm for infinite dimensional bayesian inferences.
Statistics, 82(3), 79-88.
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Numerical experiments: Prior covariance

The prior is taken to be a zero mean Gaussian with Matérn covariance:

K (t1, t2) = σ2
21−ν

Gam(ν)
(
√

2ν
d

l
)νBν(

√
2ν

d

l
) (11)

where d = |t1 − t2|, Gam(·) is the Gamma function, and Bν(·) is the
modified Bessel function.

Specification of σ and l for the following numerical experiments:

tests σ l

ODE-test1(J=14) 1 1
ODE-test2(J=5,10,20) 1 0.2

PDE(J=14) 1 1
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Performance indicators:ACF and ESS

Autocorrelation function:ACF

Given the sample chain Xt ,ACF at lag k is defined as

ρ(k) =
Cov(Xt ,Xt−k)√
Var(Xt)Var(Xt−k)

(12)

The smaller ρ(k), the better the performance.

Effective sample size:ESS

ESS is defined as

ESS =
N

1 + 2
∑∞

k=1 ρ(k)
(13)

where N is the total sample size.Usually, ρ(k) < 0.05 will be discarded.
The bigger ESS, the better the performance.
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ODE

The first example is an inverse problem where the forward model is
governed by an ordinary differential equation:

dx(t)

dt
= −u(t)x(t)

with a prescribed the initial condition be x(0) = 1.

The solution x(t) is measured every 0.02 time unitin [0, 1] and the error is
assumed to be an independent Gaussian N(0, 0.12).

We aim to infer the unknown coefficient u(t) from the observed data.
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Test1(J=14): simulated data and sample size
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pCN 0 5.5× 105

ApCN 0.5× 105 5× 105

hybrid algorithm 0.5× 105 5× 105
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Test1(J=14): ACF and ESS
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Test2(J=5,10,20):simulated data and posterior mean
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Test2(J=5,10,20): ACF and ESS
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One-dimensional heat conduction equation

The one-dimensional heat conduction equation in the region x ∈ [0, 1] is
defined as:

∂u

∂t
(x , t) =

∂2u

∂x2
(x , t), (14a)

u(x , 0) = g(x), (14b)

with the following Robin boundary conditions:

− ∂u

∂x
(0, t) + ρ(t)u(0, t) = h0(t), (14c)

∂u

∂x
(L, t) + ρ(t)u(L, t) = h1(t). (14d)

Here we choose t ∈ [0, 1] and the functions to be

g(x) = x2 + 1, h0 = t(2t + 1), h1 = 2 + t(2t + 2).
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PDE setting

1 A temperature sensor is place at x = 0.
2 The solution is measured every 1/200 time unit and the error in each

measurement is an independent Gaussian N(0, 0.12).
3 J = 14
4 the number of samples is the same as ODE test,5.5× 105 with

0.5× 105 of pre-run.
5 simulated data and posterior mean
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PDE test(J=14):ACF and ESS
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Conclusions

Comparison of performance

The experimental results the ODE and heat conduction equation,
with a relatively high correlation between eigen-functions,show that
the proposed adaptive method outperformed both the standard pCN
and the ApCN methods.

Hybrid method may not improve the efficiency much over the ApCN
when the correlations between eigen-functions are weak.

Within hybrid pCN

Tuning the number of adaptive eigenvalues,J, is a key part for the
best performance of the hybrid adaptive method.
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Thank you
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